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ABSTRACT 

Starting data are provided for internal character is t ic  programs 
pertaining to  axially symmetr ic  rocket nozzles. 
methods are examined before a complete analysis is attempted. 

Several  approximate 

Using perfect frozen gas considerations, the potential function in  
the region of interest  is approximated by a double power s e r i e s  in the 
space variables. The potential equation of motion, with the inviscid 
boundary condition, produces non-linear simultaneous equations. 

The non-linear equations a r e  handled uniquely, and the resu l t s  
a r e  utilized to descr ibe the flow field. 
the validity of the resul ts  a r e  applied, and comparisons a r e  made 
with other analyses. 

Different methods of checking 

The remaining difficulties i n  the development of a production 
program that can handle arbi t rary minimum section geometry and 
slightly varying mass flows are discussed. 
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DEFINITION OF SYMBOLS 

SYMBOL 

a 

a* 

aj  

ai .  n 

Ai ,  2j 

bi 

Di 

DEFINITION 

local speed of sound 

local speed of sound where the velocity is sonic 

coefficients in a se r i e s  expansion of g(y), o r  
constant in Method I approximate analysis 

coefficients in the polynomial representation of 

Gi , p 

coefficients of the double power se r i e s  expansion of 
the potential function, 

same as A i ,  2j 

coefficient used in approximate analysis I1 

coefficients of the se r i e s  expression for the bound- 
a r y  curve,  or  coefficient used in approximate 
analysis - Method I1 

coefficient used in approximate analyses in Method I 
for f 2 i  while in method I1 for ai 

the "unknown" of the ith boundary condition 
equation, i. e. , A i +  1, 0 

coefficients of the @ s e r i e s  in the approximate analyses 

x = g(y) defines the surface of the sonic line inMethod II 

indic e s 

denotes any of the boundary condition equations (for 
m S M )  containing p+ 1 columns 

denotes the ith boundary equation, and contains 
p t  1 columns 

vi  



DEFINITION O F  SYMBOLS (CONTINUED) 

xii 

zl 
M 

M* 

m 

n 

P 

u,  v 

YO 

x, Y 

CY 

t 

DE FINIT ION 

a function equal to  zero,  denotes the ith boundary 
equation and contains all of the columns 

m a s s  flow (dimensional) 

mass flow (non-dimensionalized) 

denotes the number of D. unknowns considered; 
it is one l e s s  than the number of rows considered 

1 

Mach number referred to  the speed of sound a* 

index of the boundary condition equations 

index 

integer,  one l e s s  than the total number od columns 
considered 

subscript denoting boundary 

perturbation velocities i n  the x and y directions 
respectively, non-dimensionalized on a* 

total velocities in x and y directions respectively, 
dimensional 

minimum throat radius 

axial and radial directions in  c i rcular  cylindrical 
coordinates 

constant, equal to  axial velocity gradient 

distance f rom minimum section to the sonic line 
along the x axis 

throat radius of curvature at the minimum section 

longitudinal coordinate, E = x-g(y) 

ra t io  of specific heats 

vi i 



DEFINITION OF SYMBOLS (Concluded) 

Y - 1  equal to - Yf 1 

perturbation velocity potential 

par t ia l  derivatives of 3, equal to u and v, respectively 

flow angle 

isentropic stagnation density 
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TECHNICAL MEMORANDUM X-53084 

INTERIM REPORT ON METHODS OF DETERMINING 

AXIALLY SYMMETRIC ROCKET NOZZLE 
THE TRANSONIC FLOW FIELD IN AN 

SUMMARY 

I@' 
This study will ultimately produce a working computer program 

to provide the initial data for the method of characterist ics.  
p rogram must  be more exact than those analytical methods now 
avail ab1 e. 

The 

Since the flow becomes supersonic in the vicinity of the throat of 
the nozzle, analysis of the transonic flow in the throat region is of 
interest .  The physical problem was approximated by a steady-state 
axisymmetric system (co-ordinates x and y) with ze ro  radial  velocity 
along the axis. 
eous, perfect gas in frozen equilibrium with no viscous forces.  The 
system is also considered irrotational and isentropic with negligible 
energy lo s ses  through the nozzle surface. 
the nozzle surface is expressed as a power se r i e s  in t e r m s  of the 
axial coordinate and is not limited to boundary surfaces  of constant 
radius of curvature for the minimum section. 

In this region, the fluid is considered to  be a homogen- 

In the region of the throat, 

This method attempts to solve the full, non-linear potential 
equation of motion. 
for the potential function. 
currence relationships for  the general coefficients that are evaluated 
in  t e r m s  of the coefficients of the velocity distribution along the axis. $.' 

The remaining coefficients a r e  determined by satisfying the inv 
boundary condition along the nozzle contour, where the contour 
described by a power se r i e s  in x. 

A double power series in both x and y is assumed 
The original equation i s  satisfied by re- 



The problem i s  that the analysis produces a n  infinite s e t  of highly 
The number of non-linear simultaneous boundary condition equations. 

equations used was determined by the s ize  of the region of convergence 
of the flow field. 
iteration. 
equation. 
of the iteration of the r e s t  of the system will channel the forced e r r o r  
toward a correct  solution. 
a r e a s  where non-linear simultaneous equations occur. 

The minimum number was solved by subsequent 
The i terative method deliberately does not satisfy each 
The e r r o r  of the equation is used as a bias  so that the effect 

This method should be usable in  other 

A library of solutions i s  needed to pick initial input values close 
to the actual solutions. 
of curvatures of, 5 to 1. 2 5  t imes the minimum section radius. 

The resul ts  a r e  presented for  constant radius 

This analysis may be the first to allow small  variation in  mass 
flow in a given nozzle. 
tion of the point where theMach one lineintersects the axis. 

The variation appears  as a shift in the loca- 

The solution is used to compute input dat& for  character is t ics  
and to check the accuracy of the program. 
a frozen flow analysis, it is used in  conjunction with equilibrium 
programs by stipulating the value of the rat io  of the specific heat f r o m  
an equilibrium combustion and expansion program. 
characterist ics was used to confirm the validity of this method. 

Although this method is 

The method of 

The obstacle to general use of this method is  the amount of com- 
puter running t ime, but the program should prove to be valuable in 
nozzle design. 
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INTRODUCTION 

The method of characterist ics,  a s  applied to gas dynamic problems, 
is restr ic ted to certain regions in the flow field. These regions a r e  
those i n  which the flow is not only supersonic but a lso purely hyper- 
bolic in  the mathematical sense. Practically,  it is  res t r ic ted to 
those regions in  which the local Mach angle is not large enough that 
the resulting characterist ic mesh calls for  excessive computer time. 
Therefore, it is necessary to generate, by some other analysis, 
certain calculated flow properties over a suitable surface from which 
the method of characterist ics can be started.  

Ultimately this study wi l l  produce a working computer program 
that will  provide the start ing data for  the method of character is t ics  as 
applied to the flow field internal to a rocket exhaust nozzle. Since the 
flow becomes supersonic in the vicinity of the throat, the analysis of 
the transonic flow in the throat region is  of interest. There are 
severa l  approximate methods for treating this particular flow; however, 
none of these have an accuracy obtainable by character is t ics  (1):::. 
Some of these methods a r e  discussed to show their salient features,  
regions of applicability, and limitations. 

Also discussed in this report a r e  the method developed to calcu- 
late the flow field to within an a rb i t ra ry  degree of accuracy, the 
computer program utilizing that method, and a comparison of various 
methods. 

This study was performed by R. S. Mendelson of the Structures 
and Mechanics Department of Chrysler Corporation Space Division , 
Huntsville, Alabama Operations under contract NAS 8-4016, Task 
Order  M-P&VE-PA-M-6, Task Assignment M-P&VE-PA-6-63. 

‘:‘Bracketed numbers that appear as supperscripts re fer  to the 
Bibliography. 
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ANALYSIS 

1. GENERAL 

There a re  several  methods, other than the two presented in  this 
paper, which give approximate solutions for  an  internal transonic 
flow. Before discussing the new method, which i s  a rb i t ra r i ly  exact, 
some of these methods should be studied because they serve  to check 
the exact method. 

In these analyses, the physical problem has been approximated by 
a steady state axisymmetric system. The fluid in  the region investi- 
gated is assumed to be a homogeneous, inviscid, perfect  gas of con- 
stant composition. Although there is  energy lost  to the nozzle wall, 
these losses  a r e  neglected, and the sys tem is considered an i r ro t a -  
tional, isentropic one. The boundary is required to be continuous 
and to have a continuous slope. The exact analysis a lso requires  that 
the nozzle radius in  the region of the throat be expressible as a power 
se r i e s  i n  terms of the station variable x. 

Combining the equations of. continuity and momentum, and imp08 - 
ing the irrotationality condition resul ts  in  the general equation of 
motion 

( a 2 - U 2 )  - au  - Z U V  - a u  t (a2 - v2) a v  + a 2 - Z  o(2) (1.1) 
a x  a Y  Y 

where: a is  the local speed of sound,. 

U and V a r e  the total velocity components in the x and y 
directions, respectively. 

X and y a r e  the axial and radial  directions in  c i rcular ,  
cylindrical coordinates. 

The speed of sound, where the Mach number is unity, i s  defined 
as a::: and i s  only a function of stagnation conditions. 
U and V a r e  nondimensionalized with respect  to a::: and written in the 
fo rm of perturbation velocities, u and v, so 

The velocities 

(1. 2) 
U z,:= 1 -t u 

4 



and 

System dimensions, x and y, a r e  nondimensionalized by the 
minimum nozzle radius y (FIG 1). 0 

~ The equation of s ta te  and the isentropic relationship and equations 
1.2 and 1. 3 a r e  used to  reduce equation 1.1 to the fo rm 

where: y is the ratio of specific he?ts, and 

r=- Y - 1  
Y + 1  

The condition of irrotationality a s su res  the existence of a velocity 
potential so 

(1. 6 )  
and 3 " X = u i  Y = v 

where the subscript  notation indicates par t ia l  differentiation with 
respect  to x o r  y. 

By virtue of equation 1. 6, equation 1.4 is reduced to the f o r m  

Equation 1. 7 is the basic equation f r o m  which all succeeding analyses 
originate. 

2. APPROXIMATE ANALYSES 

Deleting terms of the order ax2 and QY2 a s  small  compared to 
unity, equation 1. 7 can be simplified to 

5 
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a. Sauer 's  Method (3) 

X 7 

f() (x)= a - 2 

( Y i - 1 )  dX 

(y t1y C Y 3  

f2 (x) = - 
f x = -  

4 

4 ' )  64 

In Sauer 's  analysis, the origin of the coordinate system 
(FIG 1) is placed on the axis at a distance c (to be calculated l a t e r )  
downstream of the minimum section so that it coincides with the 
intersection of the axis and the cri t ical  (sonic) line. Hence, f rom 
equations 1.2 and 1. 3 and the definition of equation 1. 6 ,  it follows that 
Qx (0, O).=@y ( 0 , O )  = 0. Furthermore,  it is argued that both Qy and 
Qxy a r e  small in  the vicinity of the axis, y=O, and accordingly, the 
term 2Qy Qxy is deleted from equation 2.1, resulting in  

I 

1 
(Ti-1) axan - Qyy - y a y  = 0 

Sauer assumes the existence of a solution to equation 2.2 in  
the form: 

2i 

i = O  
where the coefficients f 2i(x) are functions of x only. 

( 2 . 3 )  

The derivatives of @ from equation 2.3 a r e  substituted into 
equation 2.2. 
approximation 

The result ing recurrence relationship and the 

f'o fx) = a x  
(2 .4)  

where: CY =constant, resul ts  in 

with f6 (X)= f8  (X) = - - - - - -  fn(x) = 0, n >  6 

The constant CY is a first approximation to the longitudinal velocity 
gradient on the axis of symmetry. 

Substituting equation 2.5 into equation 2 .  3 and differentiating gives 

I Y  i-1) ,2 y2 ex= u=(Y x -+ - 
(Y -+ 1 )  @2 a y = v =  

4 
and 

(y + 1 ) 2  CY3y3 xy t - 2 16 

I Y  i-1) ,2 y2 ex= u=(Y x -+ - 4 1 

7 



The two following boundary conditions a r e  required to evaluate a 
and E :  - 

at x = - E  and y =  1 
v =  0 

and 

(2 .7 )  

where p is the radius of curvature a t  the minimum section. 

Equation 2.7 insures  that the streamline a t  the wall has  the slope and 
curvature of the wall at the minimum section. 
2. 7 gives 

Solution of equation 

CY 
Y + l  
8 

=- 

and 

Sauer assumes that i n  equation 2 .9  

and drops that t e r m  to get 

(2.10) 

But c loser  examination shows that t e rms  of the order  of CYZ have not 
been dropped any place else  in the method. 
f rom equation 2.9 then equation 2. 10 becomes 

If the t e r m  is not dropped 

(2.11) 

cyz t e r m  cannot be legitimately Y + l  
Obviously, unless 4p>>1 ,  the 8 
dropped in equation 2 . 9 .  

8 



The relationship 

( l + u y  ' +  v z = l  

defines the critical curve M* = 1, where M * = + n .  

(2.12) 

Sauer used for  a first approximation of the curve the condition 

u = 0. (2.13) 

Sauer 's  method was never intended to be an exact procedure for  
obtaining the solution of the transonic flow field. Consequently, 
Sauer 's  method should not be expected to produce resul ts  having 
accuracycomparable to the method of characterist ics.  
cussion of the other simplified analyses, various approximations that 
Sauer used are eliminated. 

In the dis- 

b. Other Methods 

In addition to Sauer 's  approximation, there  a r e  other approximate 
analyses which give useful comparisons. One of the more  notable 
analyses is that of Oswatitsch and Rothstein (2). It, along with that of 
Sauer, is discussed briefly by Shapiro (4). The fo rmer  method, while 
it uses  the full equation of motion (Equation 1.7),neverthelessJ requires  
some apr ior i  knowledge of the velocity distribution on the axis. 
addition, the resulting flow field does not necessar i ly  satisfy the 
initial equation in  the middle regions. 

In 

Shapiro also discusses  a relaxation of finitedifference technique. 
Since this is a purely numerical method that does not lend itself to 
generalized parameter  studies, it is not discussed in this  document. 

C. Other Methods Developed in Conjunction with the P resen t  Method 

Two 'approximate methods that originated in  the present  study a r e  
of interest  because they can be used to  check the a rb i t ra r i ly  exact 
solution. 

An investigation of Sauer's method, including the l inear  coefficient 
Sauer dropped, was undertaken. 
nondimensional radius of curvature ( p ) ,  Sauer 's  method would be 
quide close to an exact solution. 
less  than one, Sauer 's  method does not produce a good approximation. 

It was concluded that for  a large 

However, a s  p approaches one o r  

9 



In the vicinity of the nozzle wal1,the term 2Qy Gxy, which Sauer 
drops, is not of negligible magnitude. By writing 

and noting that near  the wall 

Q w (l+Qx)- dyS 
Y dx 

it becomes apparent that i n  the proximity of the boundary 

2QyQxy  M - a x  

(2.14) 

(2.15) 

(2.16) 

where ys = ys (x) denotes the expression for  the boundary. 

Thus, by observation of equation 2. 16 it is seen  that the condition 
2QyQ 

XY 
tures) ,  particularly on the supersonic side of the throat where (1 ax) > 1. 
Accordingly, it should be expected that Sauer 's  method is invalid for highly 
curved walls, though it  should give excellent resu l t s  for a slowly varying 
nozzle cross-section area.  
external, axisymmetric flow indicates that this is precisely what should be 
expected. 
small  longitudinal a r e a  gradients of the body; therefore,  it gives good resul ts  
only when such is  the case.  

<< 1 is  met only for small  nozzle slopes ( large radius of curva- 

An analogy between the present  caqe and 
r 

In external flow problems, linearized theory is valid only for 

Method I 

In this method, the procedure used by Sauer is followed with the 
2Qy.Qxy term retained (equation 2. 1). 
s e r i e s  of terms f2n (x) y 2n, whereas,  in Sauer 's  ca se  all t e r m s  are zero  
beyond n = 2. 

This resul ts  in a non-terminating 

The coefficients, assuming fo '  = (YX, are  of the form 

(Y t 1 . 1 ~  2n-1 
f 2 n =  - CY (an + bn ax) (2.  17) 

2 n2 
n + O  

where an and bn a r e  evaluated f r o m  the recursion formulae. 

These formulae can be simplified to a recursion involving an  and bn 
rather  than f n, i. e. , 

10 



1 a1 = 0 and bl = z 

while 

i=n-2 bn -1 ai t 1 bn-i-1 
(itl) (n-i-1) an = 4(n-l)2 ' .& 

1= 

and i=n-2 
bi t 1 bn-i-1 
(itl) (n-i-1) 

(2.18) 

Evaluation of equation 2.3,using the first five t e r m s  of the above 
equations, produces, af ter  differentiation, the following perturbation 
velocity components: 

and 

11 



The parameter E can be evaluated by applying the boundary equation 
that the velocity component in the y direction (v) equals zero  at y =  1.0 
and x= -E , i. e: 

i=co 

(2.20) 2i-  1 
v = 0, = (2 i )  f2i ( - E )  (1.00) = o  

i= 1 

Consequently, 

(2.21) 

At any point along the nozzle surface,  defined by y=y, (x), the 
following should be true! 

1 -  V 
Y, - - l + u  

or  ( 2 . 2 2 )  

v - Y s '  = o  

where u 
tion, and ys '  is the slope of the nozzle contour. 

is the non-dimensional perturbation velocity in the x direc-  

U sing 

aY = v and @X = u and substituting equations 2.3, 2.17, 2.18, 

and 2.21 in equation 2.22 resul ts  in 

12 
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where ai is the a value of the ith iteration attempt,  and the functions 
A i ,  B i t  and Ci are: 

(2.24) 

These a r e  solved by start ing with an Q value from Sauer 's  analysis 
and then cycling between the equations until a satisfactory bolution is 
achieved. 

In attempting to construct a constant M+ line, it should be noted 
from an examination of u and v, as  given by equation 2. 19, that 
Sauer 's  approximation, equation 2.13, is only good when three t e r m s  
are used t o  describe the potential function. 

13 I 



A better approximation for an M*’= 1 curve is 

2 
V u =  - -  
2 

But, in this analysis (and all further analyses) a curve of an 
a rb i t ra ry  constant Mach number will be given by 

2@x t @x2 + Qy’ = d ( 2 t d )  

where d (a constant ) is defined by M* = 1 t d 

The curve is defined as x M x(y),where 

with 

(2.25) 

x =  - L1 t 4 (L1)2 -4(L2) (LO) 
’ 2( L2) (2.26) 

i= 2n- 1 
i= n 

i= 1 
L2 = c Y 2  + 

i=n+ 1 

i= 2n- 1 
i= n 

i= 1 
i=n t  1 

L1 = 2cY + 

21 2 i t  1 
(y+ l)i CY 

i 2  bi Y 

(2.27a) 

14 



. 

and 

LO= -d (2+d)  + 

i= 2n j =  n 

(NOTE: In using equation 2.27 when the summation has two se ts  of 
values,use all the values closest to the summation sign at the same 
time and then use the set of values furthest away.) 

Method I1 

Since the interest  is in the flow about Mach one, it was theorized 
that a quicker converging se r i e s  might be obtained if the coordinate 
system was changed so that the axes were the nozzle centerline and the 
Mach one surface. Consequently, this method involves a transformation 
of the coordinate x. 

Let the variable x be replaced by the variable 5 , defined so 
that 5 = x-g(y), where g(y) denotes the curve representing the cr i t ical  
(sonic) line (FIG. 1). The differential equation (including the 2cPycPxy 
te rm)  is transformed from x, y coordinates to the 5 , Y f rame of 
reference. 

15 



. 

The g(y) curve is unknown; however, the assumption is made 
that it can be'represented a s  an  even polynomial in y, i. e .  : 

(2.28) 
j= 0 

where the aj ' s  a r e ,  at this point, yet to be resolved. 

Let the x-y origin of the coordinates be located on the axis at the Mach one 
point, in which case ao= 0. 
st i l l  defined as in  Sauer 's  analysis (FIG. 1). 
assumed to exist in the form 

Due to the location of the x-y axis, epsilon is 
The potential function is 

i = o o  

@ = c f2i ( g )  Y2i (2 .29)  
i = O  

(2. 30) 

The change of coordinate system produces 

1 fx  ly. f E  I y = f '  

f I = - d y  dg fS  = -g ' f '  

and 

Y x  

As in prior analyses, recurrence formulae can be calculated 
by substituting @ and the polynomial form of g(y) into the transformed 
differential equation. 
a j  coefficients. 
that 

This gives fzi ( c ) ' i n  t e rms  of f o  ( e )  and the 
The assumption is made, s imilar  to Sauer 's  analysis  

f; ( E )  = c-2 5 

In addition,it is  assumed that the coefficients of the Mach one 
polynomial a r e  in  the form 

(2. 31) 2i- 1 ai = bi ( y t  1li a 

where bi is not a function of a, x, y, or  €, . 
to represent  f Z n  as  

It becomes convenient 

2n- 1 [An + % a  e1 (2. 32) 
n f  O 

- (Y+l)Q 
f 2 n  - 2nz 
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where A n  and B, a r e  not functions of x, 5 ,  or a but may be functions 
of Y or  any one of the set of bn 's .  

With the proper manipulation of equation 2.31 and 2.32 in the 
simplified equation of motion given by 2. 1, the recurrence formulae 
for  An and & a r e  obtained as 

q = pi + 2i2 bi  , when i 2 1 (2.33) 

when i 2 2 

where 

where 

and 

(2.34) 

(2.35) 

(2. 36) 
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Before the usual boundary conditions can be applied, the values 
of the b i  's must be found. The restr ic t ion to  find the necessary extra  
boundary condition a r i s e s  from the definition of x=g(y) as the curve of 
M* equal one. 

The M* = 1.0 curve is necessarily that along which 

2 2 
2 0 ,  t 9, t QY = 0 

(equation 2.25). The above equations produce a recur rence  relation- 
ship for the bi Is, i .e .  : 

=i- j -k- 2 

I =O 

(P t l )  bt+1 Bj Bi-j-k-L -1 + C  j2 (i-j-k-t -1)z 

2.37 



.. 

The first five t e rms  of the potential equation, when differen- 
tiated, produce velocity perturbation components of 

and 

(2.38) i 
( ~ + 1 ) ~  as 1 - 8 [a - + a ~ ] y 5  - 

while, the first four t e rms  used to describe the Machone surface a r e  

(2 .39)  . 

The boundary conditions that a r e  applied a r e  the same as used 
in Sauer 's  analysis (equation 2.7). The noticeable difference, however, 
is that while Sauer applies 
the point is = - Q t g( y = 1.0. The resulting equations a r e  

at x = -E and y=l .  0 ,  in this analysis 

I 

1.9 



and 

I 

(2.41) 

where 

th 
(Y is the k iteration attempt to find CY k 

(y t l )  ( p  - 1/4) Ll = - 2 

i=n i t 1  2 ( i t l )  

1=2 
% =  - 1 - c  (?+I)  ( i t l )  - P 4.11 + , 2.42 

and n is the number of t e rms  considered in the ser ies .  

Once the (Y and E values a r e  known, it is relatively easy to establish 
constant Mach lines. 
y value is given by: 

Along constant M*=l t d lines the e value for any ' 

e = - A ,  A z 2 ,  

20 
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where 

@k+l 
k=i-1 

k=o 

i t1  2(i+1) 2 ( i t l )  
+ ( y + l ) Z  (k+l) 

i= n 

' I  i= 1 
XI'; 1 + (y+ l )  a Y 

I 1  j= i-k-1 
(jt1)bjtl @i-j-k - r  (i-j-k)z 

Ai t 1-k 
i + 1-k 

j =o 

(2.45) 
i= n j = i  

i t 2  2(i t 1) 2( i+l)@j +' 1 pi +1-j 
Y (j t 1) ( i+ l - j )  1 + >' L- 7' (y t 1) a 1 i> 0 j= 0 

and 

[ 1 + c j; ( y + 1 )  Q Y (j+1) (i-j+l)  l 1  i + 2 2(i t 1) 2( i  t 1) @ j  +1 $i-j+l d(2td) 
a *  i = o  j=O 

a2 = 

Methods I and 11 have a built-in e r r o r  because they have not taken 
into consideration the axz and &g t e r m s  in  qua t ion  1.7, but they 
have included s imilar  order  of magnitude t e rms  in  ,the series expansion 
of 9. 

Neither methods I nor II have yet been programmed o r  substituted 
to replace Sauer's analysis. But this will be done later, and fur ther  

~ comparison and analysis will be attempted. 

3. PRESENT METHOD 
In view of the requirements for an analysis giving exact results, it 

was considered advantageous to proceed directly to a solution of the 
exact equation of motion. For convenience, that equation is repeated 
here. 

The potential function is assumed.to exist in  the form 
i=oa j=,  

i = O  j=o 
@ = r A(i, 2j) xi y2j ( 3 . 2 )  
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where the even exponent of the variable y i s  caused by the symmetry of 
the flow field. The velocity distribution along the x axis would be 

l and not just the f i r s t  approximation used by Sauer (ax) 

i- 1 
i A ( i ,  0)x 

i= 1 

Upon differentiation and substitution of equation 3. 2 into 3. 1, two 
algebraic relationships resul t .  These relations, which are the necessary 
and sufficient conditions for the assumed potential function to satisfy the 
equation of motion, a r e  the recur rence  formulae defining the A(i, 2j)  
coefficients in te rms  of the se t  of A ( i ,  0) coefficients. 
formulae result f rom the existence condition that the coefficient of each 
x and y te rm i n  the se r i e s  must vanish separately in order  to satisfy 
the equation of motion 3. 1, for an  a rb i t ra ry  x and y value. 

The recur rence  

These recurrence formulae a r e  given below. Their formidable 
appearance is the direct  result  of the extreme nonlinearity of the equa- 
tion of motion. With the definition of 

k=i- 1 

A(i ,  2) = (q) kg 1 2(kt2)(ktl)(itl-k)A(kt2,O)A(itl-k, 0) t 
t 8 r ( i t l -k)A(k ,2)A( i$ l -k ,0)  t 

a=i-k- 1 

((k4-2) ( k t l )  (atl)(itl-a-k)A(kt2,O)A(at 1,O)A(i+l -a -kO)+ c %, 0 
a = O  

t 4 1 ( a t l )  ( i t l - a -k )  A(k, 2) A(at1,O) A(it1-a-k, O)] 1 

(3.4). 



and 

t 2(kt2) (k+l) ( i t l -k )  A(kt2,2(j+l))A(it l-k,  0 ) t  

a=i-k- 1 
+ [ (a t l )  (i+l-a-k) (k+2) (k+l) A(k+2,2( j t l ) )A(at l ,  O)A(itl-a-k, 0 )  + 

a = O  

+ (a+l) (itl-a-k)4(j+2)’ r A(k, 2(j+2))A(atl, O)A(itl-a-k, 011) t 

+ ( 2(itl-k)(kt2)(k+l)A(kt2,2n)A(i+l-k, 2(j+l-n) t 
k=i n=j  

k=O n=O 

+ (i+l-k)s(ntl)’ r A(k, 2(ntl))A(i+l-k, 2(j+l-n)) + 

t (5) (n + l)(k+l)(j+l-n)A(k+l, 2(n+l))A(i-k, z(j+l-n)) 

a=i-k 

t (at  l@t l-a-k)(k+2)(kt l)A(kt2,2n)A(at 1 ,2 ( j t  1 -n))A(it 1-a-k, 0) t 

b=’-n 

b=O 
t f {(atl)(i t l-a-k)4(nt1)2 r A(k, Z(nt l ) )A(at l ,  2b)A(itl-a-k, 2(j t l-b-n)) t 

t (a+l%tl-a-k) (kt2)(ktl)A(kt2,2n)A(a+l, 2W(i t l -a -k ,  2(jtl-b-n)) t 

t (jtl-n-b)(kt2)(ktl)(bt1)4 rA(kt2,2n)A(a,  2(btl))A(i-a-k, 2(jM-b-n) t 

+ ( j t  1-n-b)(nt l ) ( k t l ) ( a t  1) A(kt1, 2(ntl))A(a+l,  2b)A(i-k-a, 2(jtl-n-b)) t 

t ( j+l-n-b)(nt l ) (bt l )  (16) n t l  - -) 1 ( 7t 1 
x 

11 x A (k, 2(ntl))A(a, 2(b+l))A(i-a-k, 2 ( j t  l-b-n)))] 
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The original written outline of a method to handle the programming ' 

of the two recurrence relations (equations 3 . 4  and 3. 5 )  had the Ai, 2 j ' s  
resolved into polynomials in  the unknowns Ai, 0 ' s .  All advice obtained 
suggested that the Ai, 2 j ' s  be evaluated as pure numbers instead of 
functional representations of y and the unknowns, this suggestion was 
followed, but one third of the computer running t ime will be saved i f  
the program is  revised to its original form. 

, 

F o r  convenience in future discussions, let  the unknowns be repre-  
sented by Dits , where 

when 

The equations a r e  now being re-programmed to  appear in  the form 
of polynomials of the type 

i= 1 

where 
ei is a pure number, dn, i  i s  the power to which the Dn unknown is 
raised in the ith t e rm 

and 

e = y t i  

As equation 3.4 is already programmed in the above form, some of the 
Ai, 2 ' s  are presented in  Table I. 

Here,  as in Sauer ' s  analysis, the origin of coordinates is chosen 
on the axis a distance z downstream of the minimum section. 

At this point in the analysis the unknown functions have been reduced 
to a system of unknown coefficients of the type Di and a l so  the unknownc. 
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The general inviscic flow boundary condition is that the velocity 
at the boundary surface must be  tangent to that boundary. 
surface ys is represented as a power se r i e s  in x 

The boundary 

i= 00 

i = O  
Y s  - - Bixi (3.8) 

While, the inviscid boundary condition can be written as 

where both u and v a r e  evaluated along the boundary surface,  i. e! 

I 
u = u(y,, x) = u ( Z  xl , x) = us (x only) 

and 

v = v(ys, x) = v(Z B i x  i , x) = VS(X only) 

(3.10) 

Substituting equations 3.10 and 3.8 into 3.9 and collecting the 
resulting te rms  as a power ser ies  i n  x, resul ts  i n  the boundary condi- 
tion equation in the form of 

i=ca 
i- 1 

G(i,ao) x =O (3.11) 
i= 1 

where 

1 j=, q=i 

(a t1)q B(at1)  C(i-q-a, 2j) 
j=O q=o I I.-ifq a =  0 

G ( i , a )  = iBi t 

with C (i, n) given by 

C(i,O) = t 1  for i = 0 I Ofor if 0 

(3.12) 

(3. 13) 
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C(i, 1) = Bi 

and 
b=i 

C( i ,n )  = Bb ‘i - b , n - l  
b=O 

(3. 14) 

with n > 2  J 

In equation 3 .  11, the G(i ,w) designation simply denotes the total 
collection of te rms  constituting the coefficient of xl-’. G(i,ao) con- 

hence the 00 notation. 
tains a n  infinite number of columns of t e r m s  nonlinear in A , and 

The only possible solution of equation ( 3 .  11) that would be valid 
for any arbi t rary value of x, would be that 

C(i,ao) = 0 ( 3 .  15) 

for all  values of i (i=l, 2 ,  3 - - - w ) .  
Equation ( 3 .  15) thus denotes an infinite set  of nonlinear simultaneous 
equations in the unknowns D i  ( i= l ,  2 ,  3 - - - 0 0 ) ,  each one containing an  
infinite number of te rms .  

In computing numerical solutions the infinite set  of equations 
need not be considered, but only those equations that will insure con- 
vergence to the required accuracy in the domain of interest .  
more ,  only the number of t e rms  in each equation need be considered that 
are necessary to produce the required accuracy. 

Fu r the r -  

To better picture this, the Ai,  2 j  coefficients are arranged in the 
form ofan a r r ay  

6 - - - - - - - - 2j - - - - - - 0 2 4 



Remembering that the fir st column constitutes the unknowns with 
all the other coefficients expressible in  t e r m s  of the f irst  column, 
(through application of equations 3. 4 and 3. 5) a maximum number of 
rows, Mt1, can be considered,' together with a maximum number of 
columns, p t l .  All rows and columns beyond Mt1  and p t l  can be 
considered negligible. 

The expression G(i,m) = 0 (equation 3. 15) contains all terms 
occurring in  the first it1 rows of 3. 16 and an  infinite number of its 
columns. 
i n  notation to read G(m,p),  thus, 

F o r  the M+1, p t l  system the expression G(i,m) is  changed 

1 G(m,p)  = 0 
where 

m =  1, 2, 3 - - -  M (3. 17) 

The expression for G(m, p) is the same as equation .3. 12 with i re- 
placed by m and m replaced by p. This  sys tem (equation 3.17) has 
M equations and contains the terms of the first Mt1  rows and p+l  
columns of the Ai ,  2j a r r ay ,  3.16. 

In using the recur rence  equations, 3. 4 and 3. 5, to  evaluate the 
Ai, 2j coefficients (i<M, - j l p )  considered in  the boundary condition 
equations (G Is), certain Ak, terms for which k >Mt1 appear. This 
is due to diagonal propagation characterist ics of the unknowns through- 
out the a r r a y  of 3. 16. These unknowns must  be considered z e r o  in  the 
a r r a y  of coefficients i <  M, j<p. 
the grounds of the expected s-mall magnitudes of these unknowns. 

mJ P 

This consic'eration is justifiable on 

A'judicious initial choice for M and p values must  necessarily 
resu l t  f rom experience. This choice shall be discussed in Section VI b. 

The system is now reduced to one containing M equations and M 
The quantity E , which locates the origin number of unknown AiJo'S. 

of coordihates, is an additional unknown, giving a total of Mt1  unknowns. 
The M i l s t  constraint, necessary to evaluate E , s tems f rom mass flow 
considerations and will be discussed la te r .  

At this point in  the analysis the major task remaining is the 
evaluation of the unknowns E & D i  - - - -  - Dm. Calculation of these 
quantities allows the calculation of the velocities, u and v, and hence 
the calculation of all other flow properties.  The Di terms a r e  to be 
calculated for  various prescribed E values. An iterative scheme 
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necessary  to compute the Di t e r m s  is discussed below. 

The procedure used in the present computer program is as follows: 
The ith equation will be used to  solve for the ith unknown by arranging 
G(i, p) in  the fo rm (note: there  i s  no difference between Gi, o r  G(i, p)) 

where Di represents the unknown of G(i ,p)  = 0. 
simply an expression for G(i, p) written as a polynominal in  D(i) where 
the coefficients a r e  functions of Q , D 2 - - -  DM exclusive of D1. 

Equation 3.18 is 

The present program used three values of Di (holding all others 
constant) to fit a cubic formula to  Di vs  Gi,p. 
a Gi ,p  = 0 point is predicted for  a certain Di value. 
is t r ied ,  a more  accurate cubic is fitted; this continued until an actual 
Gi ,p  = 0 point i s  found or  50 t r i e s  a r e  made. 

Using the cubic formula,  
After that Di value 

The process is  repeated for all values of i in  equation 3.18 
(i = 1, 2 - - -  M). 
the Gi+l 
until the final equation ( G M , ~ ) .  
M 
the D's. If the absolute values of each and every one of the boundary 
condition equations is  l e s s  than o r  equal t o  a specified tolerance (a), 
then the on-hand D values a r e  considered a good solution. 

A suitable root for each Gi ,p  is  used a s  new input in  
equation to  generate a second se t  of coefficients and so on - ' p. 

equation, all of the G( i ,p) ' s  a r e  evaluated with the on hand values of 
After the process  i s  performed for  the 

th  

Let a cycle be defined as a set of equation solutions - f rom i=l t o  
i=M of G(i,p) - and le t  k be the number of cycles performed. 
initial cycle (k=O), Gm,p  i s  apr ior i  non-zeroed. To explain, le t  Gm 
be equal to minus a number (n) t imes  the value of the G m , p  from the 
k-1 iteration cycle, i. e. , 

After the 

, P  

The problem i s  to determine n. 
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On the last equation (Mth), i t  was necessary to leave n equal to 
zero ,  as no perturbation occurred to this equation after a DM is found. 
In all the other equations, on the k = l  and k=Z cycle i t  was determined 
best  to l e t  n=. 75. After the k=2nd cycle, n could become a function 
of the equation as well as  the cycle, i. e. 

G ’  - -nm, k m, p( 
- 

Gm9 P )  
k- 1 

( 3 .  20)  

where 

nm, k=nm,  k-1 + 6 q (3.21) 

On the mth equation and the kth cycle a q is calculated f rom 

G 
m’p  k-1 

m s p  k-2 
q =  

With the restr ic t ions on equation 3. 21 as follows 

(3 .22 )  

* 0 . 3 s  (3 .  23) 
< 50, then nm, k - -n,,, k-1 

depending on the sign of q 

Or if lqIb 50, then nm, k=nm, k-1 (3. 24) 
1- 

While p is ,an input parameter  to the program, i t  was found best  to 
let it equal 0. 1 or  -zero. 

The a pr ior i  non-zeroing procedure is repeated until every 

IGrn,F/( Q 

m = l , 2  --- M 
(3. 25) 

It is obvious f r o m  the method just  described that the closer  the 
initial estimated D values a r e  to the actual solution D values, the 
quicker the computer will obtain the solution. Consequently, it 
becomes advantageous to prepare a l ib rary  of solutions that can 
be consulted before a new problem i s  started.  
appears  in the Appendix. 

The l ib rary  obtained 
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The remaining variable is E . Neither a one dimensional analysis 
nor Sauer 's  analysis allows a variation in  mass flow in the nozzle. As 
it i s  physically possible to have a slightly changhg nondimensionalized 
m a s s  flow through a rocket nozzle, it should be possible, i n  theoretical  
calculations, to have varying m a s s  flow conditions without violating the 
theoretical r e  strictions on the problem. Consequently, it should be 
possible to allow a variation of E , s o  a s  to  allow a variation in  the 
nozzle mass  flow. 

The variation in E will be physically res t r ic ted to  a range of values 
between choking conditions and no supersonic flow. 
physical restrictions in B might show up in the numerical  analysis. 

Violation of the 

There a r e  two different ways in which too high, o r  too low an 
value will appear. 

Physically, coo high an E value can show up a s  a supersonic flow 
s t ream with a subsonic pocket (FIG 2 ) .  
that a s  E increases  the m a s s  flow also increases  to  the point where it 
i s  impossible to have a completely subsonic cross-section. Consequently, 
the Machone line falls back to  the axis instead of proceeding to  the nozzle 
wall. 
intersect the nozzle downstream of the minimum section, A downstream 
intersection would probably violate the entropy law. 

What seems to happen i s  

With too low an E value it is expected that the Mach one line w i l l  

One of the mathematic assumptions made quite ear ly  in  the analysis 
was that 

for any i value. 
the value of D1, it is necessary to question the mathematical validity of 
the resulting solution (this occurs when E i s  too large o r  too small. ) 
Applying a rule of thumb: 
considered one where 

Consequently, when the absolute value of D2 approaches 

A mathematically valid solution shall be 

(3.27) 

The above statement, necessar i ly ,  res t r ic t s  the range of E . In 
the problems observed so f a r ,  the lower limit of E has always been 
stipulated by the mathematical limitations,while the upper limit has  been 
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stipulated either by the mathematic limitation o r  by the physical 
limitation. 

Since c is defined implicitly in  t e r m s  of mass flow, it i s  necessary  
to solve the problem for various values of E and then calculate the 
mass flow for each of these solutions. 
versus  mass flow. If the mass flow is prescr ibed,  the corresponding 
E is  read from the plot, and a final solution can be obtained on that basis. 
A tentative plot of E versus non dimensionzlied mass flow appears  in  
the Appendix a s  FIG A - 9 .  

The E values a r e  then plotted 

4. ANALYSIS AND U S E  OF THE DATA 
FROM THE PRESENT METHOD 

Once a solution i s  found, the problem has  jus t  begun. 
definition of the potential function, equation 3. 2 ,  the perturbation 
velocity components u and v are: 

F r o m  the 

u = u(x,y)  = 2 ( i i - l ) A ( i t l ,  2 j )  xi y2j (4 .1)  

and 

All of the Ai, 2 j ' s  a r e  evaluated as pure numbers for the particular 
flow field for which a solution exists. 
the flow field the Mach number, velocity components, and non-dimension- 
alized pressure  and density can be evaluated. 

Consequently, a t  any point in 

If M:g is  defined in t e rms  of a parameter  d, as  

then the equation 

2u t u2 t v2 - d l ( Z t d , )  =O (4.4) 



. 

descr ibes  a constant M:: curve (where M::: is given by equation 4. 3 ) .  
Along the curve the velocity components and the flow angle (e) a r e  
evaluated, the velocity components by equations 4. 1 and 4. 2 and the 
flow angle by 

-1 v 
8 = tan - 1 +u 

The initial equation to be satisfied was equation 3 .  1. An idea can 
be obtained as to whether a point in the flow field is within the region 
of convergence of the solution or not by evaluating equation 3 .  1 to see  
how close it comes to zero.  Define that number as zero.  

At the intersection of the constant M* curve and the nozzle, a 
check is made as to how close the solution satisfies the imposed 
boundary condition. 
s t r e a m  slope and the nozzle wall slope as e r ,  where 

Define the e r r o r  of the difference between the 

1 V 

( Y s  -l+u ) 
er = 

The constant Mx line is used as input i n  the character is t ics  
nozzle design program. 
e r r o r  printout values (zero and er).  

Which M:: line is  chosen depends on.the 

Another type of output available is a straight l ine and is defined as 
start ing on the axis at a given position and extending to  x=O and the 
nozzle wall. 

At each increment in position along such a line the flow angle, Mach 
number and M::: value are obtained. 

Along the nozzle surface the A@, ys', tan 8, Zero, and er values 
a re  calculated. 

With all the available printouts, it is not too difficult a problem 
to analyze the resulting flow field and stipulate the region of applica- 
bility of the solution. 
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5.  I N P U T  PARAMETERS 

The present method assumes  that the minimum section of the 
nozzle's surface can be expressed as a power se r i e s  in x, i. e.: 

c Bi xi 

- 
ys - (5.1) 

i = o  

(a  repeat of equation 3 . 8 ) .  

Before a problem can be started for a given nozzle contour, a power 
se r i e s  must be fitted to  the nozzle surface. If the minimum section can 
be represented a s  an a r c  of a circle ,  one can use the equation 

( X t E ) 2  t [Y - ( 1 4  = P2 

where p and E a r e  defined a s  shown on FIG 1 .  

The above equation can be written as 

(5.2) 

y = f(x) = l t p  1 - [ J1-  (%) 1 
A MacLaurin ser ies  can then be applied in the form 

(5.3) 

y = f(0) t f '  (0) x t etc,  (5.4) 

where f ( O ) ,  f ' ( O ) ,  and so  on, can be evaluated from equation 5.3. 

After differentiating equation 5. 3 the necessary number of t imes ,  
the Bi values a r e  found as 



(5. 6 )  

(5.7) 

(5.8) 

( 5 . 9 )  

(5.10) 

(5.11) 

(5.12) 

B8= - 128g 5 (k) [1 + 24(;) t 48 (:) t 9 (t) '1 (5.13) 

B,= 35 128g (&z) (-) 1 -k 8(i)2+z($ 5 P  +$ (:-I (5.14) 

and f 

where r 

g =  /1-(;) (5.16) 
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One of the purposes of this analysis  i s  to be able to handle a non- 
A subprogram to evaluate any constant radius of curvature solution. 

nozzle minimum section in t e r m s  of a power s e r i e s  is  in process .  
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DISCUSSION 

1. MATHEMATICAL PROBLEM AREAS OF THE PROGRAM 

Some mathematical a r e a s  to be clarified f rom the pre l iminary  
report  (Ref 5) a r e :  

a .  Non-Uniuue Solutions 

The form of the boundary condition equations (equations 3. 12 
and 3.17) i s  such that more  than one solution for Di i s  possible in the 
i teration scheme. 
conjugates, more  than one might be real .  
physical explanations for more  than one r ea l  solution. 
solution of a par t icular  boundary equation would not i t e ra te  success-  
fully, one might be investigating an unstable solution that could not 
exist  physically for  more  than an instant of t ime. 
the transonic flow region, unstable solutions have become infamous. 
Even i f  more than one complete problem solution se t  is found, i t  is  
suspected that all  except one would represent  a diverging se r i e s .  A 
diverging se r i e s  could quite possibly represent  another unstable 
solution o r  possibly be the resul t  of extraneous roots.  
solution, mathematically, cannot be considered a valid solution. 

While a cer ta in  number of them will be complex 
There a r e  two possible 

If a par t icular  

Needless to say, in  

A diverging 

In most  cases ,  the start ing data r ep resen t s  a solution s imi la r  
to the one desired.  
solves for  the c loses t  one which i s  the right one. 
t r i e s  to come up with an extraneous solution, the i teration scheme 
might oscillate until the program found itself back a t  the valid case.  

Consequently, it i s  felt  that the i teration scheme 
Also, i f  the program 

While the constant M+ lines a r e  being constructed, the multi-  
Fo r  any given y, there  i s  more  than one value problem a r i s e s  again. 

x value that l i e s  on the constant M::: curve because of the nature  of 
u and v, and conversely. 

Experience with the program has  shown that the transonic range 
0 i s  repeating i tself ,  just  as  a sine o r  cosine wave does every  360 . The 

region of interest ,  however, i s  the vicinity of the throat  of the nozzle. 



Consequently, the program is looking for the particular curve 
that starts at the x axis,  c lose to the origin, and propagates upward, 
toward y grea te r  than one. 

The program for calculating the M* l ines  is writ ten so it 
will re jec t  any point it finds that is fur ther  away f rom the previous 
point than four t imes the step size but will find the right point instead. 

b. Region of Applicability 

Let the region of applicability be defined as  that portion of the 
flow field where the boundary condition and initial equation a r e  satisfied 
to a desired degree of accuracy. 
be considered is directly a function of the region of interest .  
was interested only in  the region about the y axis (x quite small) , then a 
small number of unknowns need be considered. On the other hand, the 
l a rge r  the highest value of x becomes, the m o r e  unknowns that are 
required to satisfy a given tolerance. 

The number of unknowns that need 
If  one 

It is usual i n  transonic analyses to  always include, inside 
the region of applicability, the Mach one line. 
include the Mach one line necessitates use  of quite a few m o r e  unknowns 
than would otherwise be needed. 
tions, the analysis can be limited to four unknowns. 

But, in this analysis,  t o  

Consequently,with the proper r e s t r i c -  

The constant M* line that would become the output of the pro-  
g r a m  must  be chosen prudently by analyzing the various e r r o r  functions. 
Fortunately,it turns  out that as the radius of curvature  becomes 
smaller the prefer red  M:: value becomes higher, producing better 
accuracy in the next analysis (characterist ics).  

In the case  of a radius of curvature of 4. 0, a plot of various 
MS l ines  for a M, p sys tem of 4 , 7  and 7, 9 (FIG 3) shows that 
the M*=l. 0 l ines  vary considerably. But, the higher valued M* l ines  
for the 4 and 7 unknown systems a r e  similar (M*=l. 10 through 1. 15), 
with the l ines  closest  to x=O, y=ys (M*=l. 13) practically identical. 
Consequently, i f  the M::=1. 13 line was used as the output data, only a 
4 unknown system would be required. Along the M:: = 1. 13 l ine for 
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the 4 unknown case, the maximum zero value is . O O l  with e r  = +. 00005. 
Therefore, M*=l. 13 is a good choice of data to be used in the charac- 
terist ic program. 

The choice of the number of columns to use i s  more difficult 
The main restriction to than the choice of the number of unknowns. 

be satisfied is that the las t  column should have no effect on the region 
of interest. 
incJuded because too many possible solutions a r e  allowed. 
point the addition of another column introduces a solution that i s  slightly 
different than the solution required, leaving the computer with no way 
of choosing which solution is better. Experience has shown that 9 
columns is more than sufficient but yet not too numerous to cause 
ext r ane ou s s olu ti ons . 

The problem complicates itself i f  too many columns a r e  
At a certain 

The a r r ay  of pL1 2 . ' s  for a p = 2 .00  and E = . 165 (Table II) 
shows that the eifect of the ninth column fo r  an x value l e s s  than 
f . 2 would be small compared to the other columns. 

' J  

One of the initial assumptions made about the Ai, -4 ser ies  is 
that 

in all cases checked the above has been true. 

One of the minor problems in handling the program was the 
discovery of unbalanced ar rays  of Ai, 2j. An unbalanced a r r ay  
can be defined a s  that a r r a y  where the overemphasis on one of the 
variables produces a solution that has no physical significance. 
the case of M=4 and p=3 the x variable is overemphasized. 
when the number of columns (pt l )  is smaller than the number of 
rows (M+l). 
exerts a greater effect than the y variable. 
physical system, the converse is  true; the boundary condition is applied 
where y > l .  0 and x<l. 0. 
is justified in not trusting any solution where M>p. 

With 
This occurs 

There exists the implicit assumption that the x variable 
However in the actual 

Consequently, on physical grounds alone, one 
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2. UTILIZATION OF THE PRESENT PROGRAM 

This analysis i s  just one of th ree  pa r t s  of a procedure t o  design 
a given rocket nozzle. Initially, the propellants, chamber p re s su re ,  
fuel to  oxidizer ratio,  minimum section contour radius,  nozzle a r e a  ratio,  
and the rocket nozzle length are specified. 
is  used to  evaluate the chemical reactions and find the p re s su re  and rat io  
of specific heats (7) at various Mach numbers. The present analysis 
utilizes the equilibrium Y value to  produce input data for  a method of 
characterist ics equilibrium program that then 
par t  of the nozzle for various exit p ressures .  

A chemical equilibrium program 

designs the diverging 

Using equilibrium data as an  input parameter  for  a frozen flow 
program (Transonic Analysis) and then using these resul ts  in an  equilib- 
r ium program (Characterist ics Program)  seems contradictory. 

Although the total flow field i s  to  be t rea ted  as an equilibrium 
problem, one par t  of that field (under certain conditions) can b e  t reated 
as frozen flow if  

where 6 is the significant length parameter  of the frozen flow region, 
( F I G  4), V is the lowest velocity through that region, and R, is 
the fastest  reaction ra te  of the chemical processes  that might occur in 
the region. 
choice i s  to reduce, a s  much as possible the size of 6 .  
by 6 is reduced by using, in  the transonic analysis,  the Y value from the 
chemical equilibrium program which corresponds,  a s  closely a s  possible, 
t o  the Mach number of the most accurate constant Mach number line. 

A s  V and Rt cannot be varied in the programs,  the only 
The region defined 

3 .  COMPARISON WITH OTHER ANALYSIS 

It was predicted previously that this analysis and Sauer 's  would 
tend to. agree more  with one another as the radius of curvature increases .  
F o r  the case of a radius of curvature of five, there  is  already a noticeable 
difference a s  can be seen in FIG 5. 

There i s  a band of Mach numbers where a transonic analysis 
and the method of character is t ics  are both applicable. If the transonic 
data agreed with the character is t ic  data in this band one could draw the 
conclusion that the transonic method used was a valid one. 
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A comparison was made utilizing a nozzle of radius of curvature  
of two. 
as inputs for  the character is t ic  program. 
proceeded, i n  each case ,  to calculate the Mach number distribution 
along the nozzle wall (FIG 6). 
by a m  and a A . F r o m  Sauer ' s  equations, the hypothesized Mach 
number distribution was calculated - it is represented by 
FIG 6 .  
a g r e e  too well with each other. 

First,. two different M:: lines were  calculated by Sauer 's  method 
The charac te r i s t ic  p rogram 

The two different curves  a r e  symbolized 

on 
The character is t ic  curves and the predicted curve do not 

The procedure was repeated with the present  transonic analysis 
calculating the input W*k l ine for  the character is t ic  program. The 
result ing Mach number distribution is  symbolized by 0 on FIG 6. It 
can be seen on the figure that the Mach number distribution along the 
wall calculated using the present  method ( @ )  lies quite close to  the 
one calculated by the method of character is t ics  (0). Consequently, the 
p re sen t  transonic analysis s eems  to  be accurate.  

RECOMMENDATIONS 

Before the conclusion of th i s  study, the following has  yet 
to  be  completed: 

1. SIMPLIFIED ANALYSES 

The two simplified analyses (Methods I and 11) must  be t r ied  
for  var ious cases .  Most important is deciding how many t e r m s  are  
to  be  used in  their  potential functions infinite se r ies .  After numerical  
cases a r e  t r ied,  both methods will be  used i n  place of Sauer ' s  method 
in  the Allison p rogram (6). Of course,  a comparison between Saue r ' s  
analysis ,  Method I, Method 11, and the present  method will be made. 

2. LITERATURE SEARCH 

The l i t e ra ture  search ,  now in  p rogres s ,  will be continued 
until all available report ,  books, and periodicals have been reviewed 
for  useful methods and experimental data. 
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3.  PRESENT METHOD 

The Ai, 2j suberoutine must be re-programmed as mentioned in 
Section III. 
apparent that can further shorten the running time of the program. 

Afterwards, it is  expected that other changes will become 

After these changes a re  made, the p value will be pushed as 
low as the program will go. 
for particular p and E values, will become part  of the program for 
use with a routine for choosing initial values of the unknowns to start 
the program. 
to efficiently handle other y values further work will have to be done. 
Increments of the unknowns, (not necessarily small) versus incremento 
in y values, must be obtained for various p and Q values. 

The resulting listing of all the unknowns, 

Most of the solutions obtained a r e  based on a y of 1.20; 

The nozzle parameter sub-routine will soon be revised so  it 
can handle non-constant radius of curvature cases. 
program changes a r e  necessary the programmer will streamline 
and polish it up, so that anyone can utilize it with a minimum of 
instructions. 

After no more 

Such instructions wil l  appear in  the final report. 

4. FINAL REPORT 

The final report  will contain all of the material presented herein, 
including revisions and changes. 
in the course of the evaluation of the analysis will be included. 
Derivations of the equations used, a s  well a s  the operational methods, 
will appear as appendixes. 

Examples and trends discovered 

The report will contain a write-up of all the programs, with 
a section written by the programmer presenting symbolic write-ups, 
instructions for use, and flow charts of all the sub-programs in use. 
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APPENDIX 

LIBRARY O F  SOLUTIONS 

The solutions achieved to date appear in two fo rms ,  the unknowns 
versus  the radius of curvature  of the minimum section, p ,  and the 
unknowns versus  the distance, e ,  of the Mach one 'line f rom the minimum 
s e c t ion. 

The l a s t  curve (FIG A-9) represents  the var ious non dimensionalized 
mass flows (for .constant p values) ve r sus  c values. The relationship 
between the m a s s  flow (I%) and the non dimensionalized m a s s  flow (x) 
is 

a z 

where po i s  the isentropic stagnation density. 
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Coeff.  

A1, 2 

A2, 2 

-I- 

-x3 
1. 0 
2. 0 

A 3 , 2  
8. 0 
6. 0 
4. 5 

12. 0 
4. 0 
4. 0 

A4,2  
1 2 . 5  
10 .0  
11.25 
15. 0 
20. 0 
30. 0 
22. 5 
30. 0 

2. 0 
12.0 

8 .  0 

A 5 , 2  - 
15. 0 
36. 0 
22. 5 
30. 0 
48. 0 

TABLE I 
4 , 2  CONSIDERING ONLY 4 UNKNOWNS 

I 1 -- 

I P o w e r  of: I 

2 

1 
3 
3 

1 
2 
0 
2 
4 
4 

1 
2 
1 
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2 
3 
1 
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5 
5 
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2 
1 
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2 
3 
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1 
0 
0 

0 
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2 
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0 
0 
2 
1 
0 
1 
2 
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0 

0 
1 
1 
0 
0 
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0 
0 
0 

1 
0 
0 
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0 
0 

0 
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0 
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1 
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0 
0 
0 
0 

0 
1 
0 
0 
1 

0 

0 
0 
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0 
0 
0 
0 
0 
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1 
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0 
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2 %  
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1 
1 
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Coeff. 
(Cont. 

A 5 , 2  
6. 75 

81. 0 
12 .0  
72. 0 
48. 0 
18. 0 

108. 0 
13. 5 
81. 0 
72. 0 
12. 0 
32. 0 
16. 0 

A6, 2 
373 

28. 0 
70. 0 
31. 5 

252. 0 
35. 0 

105. 0 
70. 0 
28. 0 

168. 0 
94. 5 
63. 0 

378. 0 
56. 0 
63. 0 

252. 0 
112 .0  
126. 0 
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TABLE I (CONTINUED) 
Ai, 2 CONSIDERING ONLY 4 UNKNOWNS 

Power  of: 

0 
2 
0 
1 
3 
4 
4 
0 
2 
4 
6 
6 
6 

1 
1 
3 
0 
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0 
1 
3 
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0 
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Coeff. 
(Cont. ) 

*6, 2 
336.0 
94.5 
252.0 
168.0 
4.0 
48.0 
80.0 
32.0 

- 

* 7 ,  2 - 
80.0 
45.0 
36.0 
48.0 
192.0 
40.0 
240.0 
432.0 
192.0 
1152.0 

25.0 
160.0 
90.0 
360.0 
160.0 
192.0 
512.0 
108.0 
40.5 
648.0 
540.0 
1440.0 

TABLE I (CONTINUED) 
pi, 2 CONSIDERING ONLY 4 UNKNOWNS 

Power of: 

5 
1 
3 
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0 

0 4 
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0 5 
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0 4 
0 5 
0 6 

1 1 
1 1 
1 2 
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0 2 
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1 3 
0 2 
0 2 
0 3 
2 1 
1 2 
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0 3 
0 4 

3 
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2 
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TABLE I (CONCLUDED) 
A i ,  2 CONSIDERING ONLY 4 UNKNOWNS 

Coeff. 
(Conc. ) 
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FIGURE A 5  FIRST U N K N O W N  VERSUS DISTANCE FROM M I N I M U M  SECTION T O M A C H  

ONE LINE FOR CONSTANT VALUES OF RADIUS OF CURVATURE OF M I N I M U M  SECTION 
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FIGURE A6  SECOND UNKNOWN VERSUS DISTANCE FROM MINIMUM SECTION TO MACH 

ONE LINE FOR CONSTANT VALUES OF RADIUS OF CURVATURE OF MINIMUM SECTION 
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THE TRANSONIC FLOW FIELD IN AN 

BY 

R. S. Mendelson 

George C. Marshall Space Flight Center 

Huntsville, Alabama 

ABSTRACT 

Starting data are provided for internal characteristic programs 
pertaining to axially symmetric rocket nozzles. 
methods are examined before a complete analysis is attempted. 

Several approximate 

Using perfect frozen gas  considerations, the potential function in 
the region of interest is approximated by a double power ser ies  in the 
space variables. The potential equation of motion, with the inviscid 
boundary condition, produces non-linear simultaneous equations. 

The non-linear equations a r e  handled uniquely, and the results 
are utilized to describe the flow field. 
the validity of the results a r e  applied, and comparisons a r e  made 
with other analyses. 

Different methods of checking 

The remaining difficulties in the development of a production 
program that can handle arbitrary minimum section geometry and 
slightly varying mass flows a r e  discussed. 
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